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Recent crude oil price dynamics have been characterized by high volatility, high intensity jumps, and 

strong upward drift, indicating that oil markets have been out-of-equilibrium. In this paper, an 
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supply and an expanding world demand for crude oil. A change in the oil price process parameters 

would require a change in the underlying fundamentals. Market expectations, extracted from call and 
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expected oil prices to remain volatile and jumpy, and with higher probabilities to rise, rather than fall, 

above the expected mean. 
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Oil Price Dynamics (2002-2006)  

 
I.   INTRODUCTION 

Under the combination of rapidly expanding world demand for crude oil and tight world 
crude supply, crude oil prices have jumped in recent years. By breaking a record level of 
US$78.30 per barrel (bl) on August 7, 20061 and remaining comfortably in the neighborhood 
of US$75/bl during much of 2006, crude oil prices had risen to uncharted levels. While 
economic agents, including traders, investors, speculators, and policymakers were following 
developments in crude oil prices closely, not much was known about the stochastic processes 
driving these prices. Contrary to stock market indices, for which an abundant and advanced 
modeling literature now exists, crude oil prices, in spite of their importance, have not been 
the subject of extensive modeling research. Knowledge of their underlying stochastic process 
is highly relevant not only for pricing derivatives and hedging, but also for policymaking and 
short-term forecasting.  
 
In this paper we address the dynamics of daily oil prices during the period from January 2, 
2002 to July 7, 2006.2 At the outset numerous striking facts regarding oil markets should be 
stated. Foremost, global demand pressure for oil kept increasing during this period, causing 
oil prices to rise by more than threefold, from US$21.13/bl on January 2, 2002 to 
US$73.76/bl on July 7, 2006.3 Second, the noted ascent in oil prices was not monotonic or 
smooth; oil prices rose, often to a new record, retreated temporarily, then resumed their move 
to higher record; their movements were dominated by high intensity jumps, indicating that oil 
markets were constantly out-of-equilibrium. Third, oil price volatilities were excessively 
high. As measured by the implied volatility, volatility was in the range of 30 percent, 
implying that oil markets were facing big uncertainties regarding future price developments 
and were sensitive to small shocks and to news. Finally, market expectations, extracted from 
crude oil call and put option prices, were right-skewed. More specifically, markets held 
higher probabilities for further price increases than price decreases. Moreover, markets 
seemed to expect large upward jumps in oil prices, as reflected by the price and volume of 
options at strikes in the range of US$75–US$85/bl. 
 
The paper is structured as follows. In Section II, we describe the time series properties of oil 
prices and the empirical distribution of oil price returns. In Section III, we model oil prices as 
a Merton (1976) jump-diffusion (J-D) process. In Section IV, oil price returns are modeled as 
a Levy process of the variance-gamma type (Madan and Milne, 1991; and Madan et al., 

                                                
1 When British Petroleum shut down the Prudhoe Bay field in Alaska for pipeline maintenance. 

2 Futures' contracts on Brent, three-month delivery; the sample contains 1130 observations. The source is 

Reuters.  

3 The recessionary effect of high oil prices has been studied by Hamilton (1983). A considerable literature 

thereafter has dealt with the relationship between oil shocks and real GDP. By causing a general increase in the 

price level, oil shocks, ceteris paribus, reduces real cash balances and therefore aggregate demand. 
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1998). In Section V, we discuss option pricing in the Fourier space (Heston 1993, and Carr 
and Madan, 1999). In Section VI, we present an oil price density forecast based on option 
prices. Our conclusions are in Section VII.  
 

II.   EMPIRICAL ASPECTS OF FUTURES OIL PRICES DURING 2002–2006 

A.   Recent trends and descriptive statistics 

With a view to concentrating on recent oil prices dynamics, the chosen sample period was 
January 2, 2002–July 7, 2006, containing 1,130 daily observations. In Figure 1 we illustrate 
the daily behavior of oil prices. It clearly shows that oil prices were moving upward, and 
have become forecastable. After each peak, oil prices seemed to retreat temporarily then re-

trended toward higher peaks. Let 
t

S  be the futures price in US$/bl. An augmented Dickey-

Fuller test (Table 1) indicated that 
t

S  possessed a unit root; it was pulled by an upward trend, 

showing no sign for mean reversion. Changes in
t

S , defined as
1t t t

S S S= , were, however, 

stationary. Based on the unit-root test, the dynamics of the oil process were represented by a 
simple auto-regression of order two (AR2) which yielded good fit and highly significant 
coefficients, namely: 

1 2
31.3 2.3 0.98

0.93 0.07 0.09
t t t

t t t

S S S
= = =

= + + , 
2

R =0.99, DW=2.05    (1) 

 
 

Table 1. Time-Series Properties of Oil Prices 
Augmented Dickey-Fuller Unit-Root Test on Oil Prices. 

Null Hypothesis: 
t

S has a unit root. 

Augmented Dickey-Fuller test statistic=-0.52; probability value=0.88. 
Test critical values: 1% level (-3.44); 5% level (-2.86); 10% level (-2.57). 

Null Hypothesis: 
1t t t

S S S=  has a unit root. 

Augmented Dickey-Fuller test statistic=-35.98; probability value=0.00. 

Test critical values: 1% level (-3.44); 5% level (-2.86); 10% level (-2.57). 
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These price dynamics reflected the underlying fundamentals of the oil markets.4 In spite of 
rising prices, world crude oil supply was rigid at about 81 million barrels per day (mbd) for 
most of the sample period.5 World crude oil demand was, however, strongly stimulated by a 
world economy growing at 4–5 percent per year during 2002–06, excessively low nominal 
interest rates, and sharply depreciated US dollar.6 Additionally, world crude oil demand is 
known to be highly price inelastic in the short term. Price elasticity of demand ranges 
between -0.01 and -0.04. More specifically, significant increase in oil price would have only 
a small negative impact on oil demand. World crude oil demand is also known to have high 
income elasticity. If the technical coefficient between crude oil and real GDP is fixed in the 
short tem, then income elasticity could be close to one. Econometric estimates, however, 
show that short-run income elasticity ranges between 0.2 and 0.4. Thus rigidity of crude 
supply, combined with an expanding world demand for crude oil, has resulted in growing 
demand-supply imbalances. Given price inelasticities of both oil demand and supply, even a 
small excess demand (supply) for oil would require large changes in oil prices to clear 
markets.  
 

Figure 2. Daily Crude Oil Price Returns Distribution, Jan 2, 02-July 7, 06. 

 
Descriptive statistics: mean = 0.116; standard deviation=2.29; skewness=-0.39; kurtosis=4.79; 

Jarque-Bera normality statistics=179.3, probability-value=0.0. 

 
Additional insight into oil price dynamics is uncovered by analyzing the log-price return 

defined as 1log log log
t t t t

x S S S= = . The graph for these changes (Figure 2) shows that 

large jumps in crude oil prices were frequent and had a relatively high probability. Although 
the mode was around 1–2 percent, daily changes in the range of 5–7 percent were not 
uncommon.7 The empirical distribution had a large dispersion, with standard deviation 
                                                
4 Investors and speculators, through opening and closing positions on the futures markets, affect price dynamics 

and increase price volatility. However, their role is limited to the short run. Given the sample period under 

study, underlying fundamentals were key determinants of the oil price process. Incidentally, the IMF World 

Economic Outlook, September 2006, could not establish evidence for a long-term effect of speculation on oil 

prices.  

5 See, for instance, The International Energy Agency, Oil Market Report, September 2006. 

6 World economy was reported to have grown at about 4-5 percent in real terms during 2002-2006. See 

International Monetary Fund, World Economic Outlook, September, 2006. 

7 The frequency of jumps exceeding 3± percent was estimated from the sample at 23 percent. 
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estimated at 2.29 (annualized to 36.3 percent). The distribution was left-skewed, implying 
that downward jumps of smaller size were more frequent than upward jumps of larger size; 
as the mean was positive and high, smaller jumps were outweighed by larger jumps. The 
distribution had also fat tails, meaning that large jumps tended to occur more frequently than 
in the normal case. These empirical findings on daily oil futures prices were typical of 
financial time series as noted in Clark (1973), Fama (1965), and Mandelbrot (1963). These 
facts suggested modeling the oil price process as a jump-diffusion or, in a more general way, 
as a Levy process (Cont and Tankov, 2004).  
 

B.   Oil Price Time-Varying Volatility  

Volatility measures uncertainty and also sensitivity of prices to news and shocks, and is a key 
parameter in option pricing. Two types of volatilities are studied here: the implied volatility 
from crude oil call options,8 and volatility computed by a GARCH (1, 1) model. Both 
measures point to high volatility in futures prices. 
 
Data on implied volatility for Brent futures options for August 2005–June 2006 indicated that 
oil price volatility was high (Figure 3). While averaging 30 percent, volatility often surged to 
34–35 percent, indicating that oil markets were experiencing big uncertainty regarding 
expected price developments, and were highly sensitive to small shocks and news. Volatility 
pattern shows volatility clustering with rising pressure on oil prices and volatility decline  
with reduced pressure on oil prices. High volatility increases speculative demand for futures 
contracts, which in turn leads to higher volatility and volatility clustering. 
 
Volatility was also computed using a GARCH model for data on daily oil futures prices 
covering January 2, 2002–July 7, 2006 (Figure 4). The oil price return was defined as: 

1log log log
t t t t

x S S S= = .9 The fitting of the GARCH model showed high price 

volatility, periods of volatility clustering, followed by some reversion to a mean volatility 
estimated at 43 percent. GARCH volatility was rising during periods of large price shocks, 
stimulating speculation and leading to volatility clustering; it was, however, receding during 
periods of price retreat. It corroborated the observed implied volatility, namely oil markets 
were constantly experiencing large uncertainties and were affected by frequent shocks. 
 

                                                
8 Implied volatility is the volatility which equates the Black-Scholes (1973) call option pricing formula with the 

call option’s market value. 

9 GARCH stands for Generalized Autoregressive Conditional Heteroskedasticity. A GARCH (1,1) model is 

defined as follows: The mean equation: log
t t t

x S c= = + , 
2~ (0, )

t t
N  

The conditional variance equation:
2 2 2

1 1t t t
= + + , where 

2 2( )
t t

E=  
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Figure 4. Estimated GARCH (1,1) Volatility, Jan 02-July 06.
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III.   CRUDE OIL PRICE AS A MERTON JUMP-DIFFUSION PROCESS  

A.   The Stochastic Differential Equation for the Jump-Diffusion Model 

Based on the empirical findings of the previous section, namely the presence of skewness 
and kurtosis in the empirical distribution of oil price returns, an adequate model for oil prices 
would be a jump-diffusion model. In fact, Merton (1976), recognizing the presence of jumps 
in asset prices, for more accurate option pricing proposed modeling these prices as a jump-
diffusion process instead of a pure diffusion model. Moreover, it is well-known that short-
term options have market implied volatilities that exhibit a significant skew across strikes. In 
this connection, Bakshi et al. (1997) argued that pure diffusion based models have difficulties 
explaining the smile effect in short-dated option prices and emphasized the importance of 
adding a jump component in modeling asset price dynamics. In the same vein, Bates (1996) 
noted that diffusion-based stochastic volatility models could not explain skewness in implied 
volatilities, except under implausible values for the model’s parameters. Models with jumps 
generically lead to significant skews for short-term maturities. More generally, adding jumps 
to returns in a diffusion-based stochastic volatility model, the resulting model can generate 
sufficient variability and asymmetry in the short-term returns to match implied volatility 
skews for short-term maturities. 
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Accordingly, the continuous-time stochastic process driving crude oil prices can be stated as 
a J-D process given by a stochastic differential equation (SDE): 

( )( )exp 1t

t t t

t

dS
dt dB J dN

S
= + +              (2) 

t
S  denotes crude oil price,  is the instantaneous return, and 2  is the instantaneous 

variance. The continuous component is given by a standard Brownian motion,
t

B , distributed 

as ~ (0, )
t

dB N dt . The discontinuities of the price process are described by a Poisson 

counter
t

N , characterized by its intensity, , and jump size, 
t

J . The Brownian motion and 

the Poisson process are independent. The intensity of the Poisson process describes the mean 
number of arrivals of abnormal information per unit of time and is expressed as: 

[ ]Pr 1
t

ob N dt= = , and [ ]Pr 0 1
t

ob N dt= = . When abnormal information arrives, 

crude oil price jumps from
t

S  (limit from left) to ( )exp
t t t

S J S= . The percentage change is 

measured by ( )( )exp 1
t

J . The jump size, 
t

J , is independent of 
t

B  and
t

N , and is assumed 

to be normally distributed: 2~ ( , )
t

J N . Letting ( )log
t t

X S= and using Ito’s lemma, the 

log price return process becomes: 

21

2
t t t t t t t

dX dt dB J dN dt dB J dNμ= + + = + +        (3) 

where 21

2
μ = .10 The parameter vector associated with the price process is therefore 

( )2 2
, , , ,μ= . Discretized over( )+tt, , the model takes the form:  

0

t
N

t t i

i

X B Jμ
=

= + +  (4) 

Where ( )~ 0,
t t t

B B B N+= , and 
t t t

N N N
+

=  is the actual number of jumps 

occurring during the time interval( )+tt, , and 
i

J are independently and identically 

distributed as 2~ ( , )
i

J N . The log-return,
t t

x X= , includes therefore the sum of two 

independent components: a diffusion component with drift and a jump component. Its 
probability density is a convolution of two independent random variables and can be 
expressed as:11 

                                                

10 A solution to this SDE can be written as ( ) 2

0

1
0 exp

2

T
N

T T i

i

S S T B J

=

= + +  

11 Ball and Torous (1985) modeled the jump component in Merton’s model as a Bernoulli process. In this 

respect, either one or no abnormal event occurs during the time interval ( )+tt, , with Prob[one abnormal 

event]= , Prob[no abnormal event]=1 , and Prob[more than one abnormal event]=0. The density 

function for the log-return becomes: ( ) ( )( ) ( )( )2 2 2
, , 1f x N n n Nμ μ= + + +  
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( )
( )

( )

( )

2

2 22 2
0

( ) 1
exp

! 22

n

i

x ne
f x

n nn

μ

=

=
++

     (5) 

With 0,1,2,.......n = . Putting 1= , i.e., the time interval is( )1, +tt , the density function 

becomes 

( )
( )

( )

( )

2

2 22 2
0

( ) 1
exp

! 22

n

i

x ne
f x

n nn

μ

=

=
++

  (6) 

 
B.   Alternative Methods for Estimating the Jump-Diffusion Model: Maximum 

      Likelihood, Method of Cumulants, and Method of Characteristic Function 

 

1.  The maximum likelihood method: Let { }
T

xxxx ,.......,,
21

= be an observed sample 

of log returns, the log-likelihood function can be expressed as: 

( )
( )

2

2 22 2
1 0

1
; ln(2 ) ln exp

2 ! 2( )

nT
t

t j

x nT
L x T

n nn

μ

= =

= +
++

   (7) 

Application of the maximum likelihood (ML) method for estimating the J-D model has met 
with difficulties arising mainly from the identification of the jump parameter and instability 
of parameter estimates. Nonetheless, Ball and Torous (1983) applied directly the ML method 
by truncating the number of jumps at 15n = . Ball and Torous (1985) and Jorion (1988) 

applied the ML method by assuming a Bernoulli process for the jump component. While the 
ML estimates achieve the lower bound for Cramer-Rao efficiency criterion, difficulties with 
the likelihood function arising from computational tractability, un-boundedness over the 
parameter space, and instability of parameters, have led researchers to explore alternative 
estimation methods, based essentially on the method of moments. 
 
2.  The method of cumulants (See Annex): Press (1967) used the method of cumulants 
as described in Kendall and Stuart (1977) to estimate the J-D model. Define the characteristic 

function (CF) of 
t

X as: 

( ) ( ) ( ) ( )exp expX t t t tu E iuX iuX f X dX= =   (8) 

where ( )tf X is the probability density function of
t

X , u is the transform variable, 

and 1 i= .12 The cumulants of 
t

X , denoted by 
n
, 0,1, 2,....n = , are the coefficients in the 

power series expansion of the logarithm of the CF of 
t

X , expressed as: 

                                                
12 The characteristic function ( )X

u  is related to the moment generating function ( )X
G u  

( ) ( ) ( ) ( )exp exp
X t t t

G u E uX uX dF X= =  by a change of the transform variable u iu , 

namely ( ) ( )X X
G iu u= , and ( ) ( )X X

G u iu= . 
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( )
( ) ( ) ( ) ( )

2

1 2

1

ln 1 ...... ........
! 1! 2! !

n n

n n

n

iu iu iu iu
u

n n=

= = + + + + +          (9) 

Noting that the CF for the jump-diffusion process is given by:13  

( )
1

2 2 2 2

exp exp 1
2 2

X

u u
u i u i uμ= + +  (10) 

It follows that the first four cumulants of the J-D process are:  

1
μ= + , 2 2 2

2
= + + , ( )2 2

3
3= + , ( )4 2 2 4

4
3 6= + + (11) 

Obviously, the cumulants enable the recovery of J-D parameters from sample moments. 
Press (1967), in order to avoid using higher order cumulants, imposed the 
restriction 0μ = and derived the following relations: 

2

4 23 34

2

1 1 1

3
ˆ ˆ ˆ2 0

2 2
+ = , 1ˆ

ˆ
= ,

2

2 3 1

1

ˆ
ˆ

3
= , 

2

2 2 3 11

2

1

ˆ
ˆˆ

ˆ 3
= +  (12) 

Press’ estimates often carried the wrong-sign and were not plausible. Beckers (1981) adopted 
the same method as Press, however, setting , instead ofμ , to zero. Using sixth order 

cumulants, his cumulant equations yielded the following system: 

1
μ̂ = , 

3

4

2

6

25
ˆ

3
= , 2 6

4

ˆ

5
= , 

2

2 4

2

6

5
ˆ

3
=   (13) 

Beckers’ estimates improved those of Press, yet they were not free of anomalies. Ball and 
Torous (1983), using a Bernoulli, instead of a Poisson, jump process and maintaining 
Beckers’ restriction, i.e. 0= , derived the following cumulant equations: 

 
1

μ= , 2 2

2
= + , 

3
0= , ( )2

4
3 1= , 

5
0= , ( )( )6

6
15 1 1 2=  (14) 

Again by equating with population cumulants, they obtained estimators μ̂ , ˆ , 2
ˆ , and 2ˆ  

given by: 

 
1

μ̂ = , ( )* *ˆ 1 3 /(3 100) / 2= ± + , 2 2

2

ˆ ˆˆ = ,  ( )( )( )2

6 4

ˆ ˆ/ 5 1 2=  (15) 

where ( )
2*

6 4
/= . Das and Sundaram (1999) used the method of moments to estimate the 

J-D model. Denoting the log-price return by 
t

x , and assuming that the jump size
t

J  is 

distributed as ( )2
~ ,J N , they computed the first moments of the J-D process. Imposing a 

given value for the Poisson parameter , they used the moments’ equations to estimate the 

model’s parameters: 

[ ] ( )( ) ( )2 2 2
Var x E x E x= = +   (16) 

( )
( )( )

( )

( )

( )

3
3 2

3/ 2 3/ 2
2 2 2

3E x E x

skewness x

Var x

+
= =

+ +
   (17) 

                                                
13 See, for instance, Madan and Seneta (1987), and Cont and Tankov (2004). 
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( )
( )( )

( )

( )

( )

4
4 2 2 4

2 2
2 2 2

6 3
3

E x E x

kurtosis x

Var x

+ +
= = +

+ +
  (18) 

 
3.  The method of the characteristic function (CF): As there is a one-to-one 

correspondence between the CF, ( ) ( ) ( ) ( )exp expX t t t tu E iuX iuX f X dX= = , and the 

corresponding probability density, ( )tf X , the CF conveys the same information as the 

probability distribution. Often, the transition density function of a stochastic process may not 
be available in closed form, while the CF is readily available in closed form. Knowledge of 
the analytic form of the CF allows estimating the parameters of the process by the method of 
moments or the empirical CF procedure (ECF). 14 The method of moments computes non-

central moments of any order n  as ( ) ( ) 0

1
|

n
n

t un n

d
E X u

i du
== . It also enables the 

application of the empirical characteristic function method (ECF). In both cases, a General 
Method of Moments (GMM) procedure is implemented, consisting of minimizing a distance 
norm between the sample and the theoretical population moments, or the sample CF and the 
theoretical CF. The exact method of moments consists of estimating the parameter vector 

which minimizes the distance ( ) 0

1
|

n

n

un n
E X

i u
= .15 

The ECF method can be described as follows. Suppose { }
T

xxxx ,.......,,
21

=  is an identically 

independently distributed realization of the same variable X with density ( ; )f x  and a 

distribution ( )F x . The parameter l
R is the parameter of interest with true value 

0
. It is to 

be estimated from { }
T

xxxx ,.......,,
21

= . Define the theoretical CF as: ( ) ( ; )iuxu e f x dx=  

and its empirical counterpart (ECF) as: 

1 1 1

1 1 1
( ) ( ) exp( ) cos( ) sin( )

T T T
iux

n n j j j

j j j

u e f x dx iux ux i ux
T T T= = =

= = = +   (19) 

                                                
14 Parzen (1962), Feuerverger and Mureika (1977), Feuerverger and McDunnough (1981a and 1981b)) 

suggested the use of the CF to deal with the estimation of density functions. Madan and Seneta (1987) proposed 

a CF-based approach to estimate the J-D model. In the same vein, Bates (1996), Duffie et al. (2000), Chacko 

and Viceira (2003), and many other authors have proposed the use of CF for estimating affine J-D models.  

15 Note that
( ) ( )log log

n
X n Xn

X e e= = . Therefore, 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
nLog X nLog X nLog Xn

Log X
E X E e E e e f X dX n= = = = . Namely, for the log-

return 1log( / )
t t t

x S S= , ( ) ( )( ) ( ) ( ) ( )1
/

n

t tlog S Sn nx nx

xE x E e E e e f X dX n= = = = . It follows that 

the n th order moment ( )n
E x can be computed by replacing the transform variable u by n in the CF of 

( )1log /
t t t t

x X S S= = . 
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The ECF procedure consists of estimating  according to the criterion: 
'ˆ arg min( ) ( )

n n
W=  (20) 

W is a positive semi-definite matrix. Because the minimization of the distance between the 

ECF ( )
n

 and CF ( ) over a grid of points in the Fourier domain is equivalent to matching 

a finite number of moments, the ECF method is in essence equivalent to the Generalized 
Method of Moments (GMM). Feuerverger (1990) proved that, under some regularity 
conditions, the resulting estimates can be made to have arbitrarily high asymptotic efficiency 
provided that the sample of observations is sufficiently large and the grid of points is 
sufficiently fine and extended. Indeed, ECF estimators have the same consistency and 
asymptotic efficiency as the GMM estimators. Moreover, when the number of orthogonal 
conditions exceeds the number of parameters to be estimated, the model is over-identified, in 
that more orthogonal conditions are used than needed to estimate . A test of over-

identifying restrictions may be used. In this respect, Hansen (1982) suggested a test of 
whether all of the sample moments are as close to zero as would be expected if the 
corresponding population moments were truly zero. 
 
4.  Empirical Results of the Estimation 

 
Based on a sample of daily prices for Brent futures prices described in Section II, alternative 
methods were used for estimating the J-D model (Table 2). First, assuming a Bernoulli jump 
process, the ML was applied unrestrictedly, and with restriction on the probability of a 

jump occurring on a trading day given by =0.23. Second, the method of cumulants was   

applied consecutively with restrictions =0.23, μ =0 (Press, 1967), and =0 (Beckers, 

1981), respectively. The third method was the ECF applied unrestrictedly and with restriction 
=0.23. The three methods yielded parameter estimates that were consistent with the 

empirical features of oil prices discussed in Section II. They showed pointedly that the 
dynamics of the oil price process were influenced by both diffusion and jump components; 
however the jump component was dominant. Besides having high intensity, the jump 
component had a much higher variance than the diffusion component. The high variance of 
the jump component illustrated the presence of jumps of large magnitude and was in 
conformity with the excess kurtosis in the empirical distribution of oil price returns. The  
mean of the jump size tended to be negative, in conformity with the negative skewness of the 
empirical distribution. This was due to the fact that crude oil prices were not monotonic; they 
leapt forward, than retreated back in smaller movements before taking a new jump. The drift 
of the diffusion component was high, in conformity with the observed upward trend in crude 
oil prices; it illustrated the presence of a force that kept pushing oil prices upward and was 
able to outweigh the negative mean of the jump component.  
 

Table 2. Jump-Diffusion Model: Parameter Estimates 
Methods Drift μ  Variance 

2
 Intensity  Mean  Variance 

2
 

Bernoulli process 
Maximum Likelihood     

 

Maximum Likelihood  

1/ 

 
0.23 

(t=3.22) 

0.27 

(t=3.08) 

 
4.46 

(t=20.25) 

3.34 

(t=14.49) 

 
0.59 

(t=1.89) 

0.23 

 
-1.12 

(t=-4.27) 

-0.68 

(t=-1.93) 

 
4.47 

(t=17.12) 

7.98 

(t=6.25) 
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Cumulants 1/ 

Press (1967) 2/ 

Beckers (1981) 3/ 

0.32 

0 

0.12 

1.81 

6.54 

3.34 

0.23 

0.10 

0.22 

-0.85 

1.11 

0 

2.78 

-13.88 

8.62 

ECF 4/ 

 
ECF 1/ 4/  

 

0.57 

(t=7.96) 
0.27 

(t=16.1) 

0.54      (t=1.11) 

3.45 
(t=127) 

 

4.37 

(t=3.49) 
0.23 

 

-0.10 

(t=-6.25) 
-0.52 

(t=-3.75) 

0.96      (t=5.57) 

6.97 
(t=31.35) 

 

1/ Restriction on 0.23= , computed from the data sample as the frequency of a jump in the crude oil price 

exceeding ± 3 percent. 2/ Restriction on μ =0. 3/ Restriction on =0. 4/ The grid for u consists of twenty 

points: 0.1,0.2,0.3,........,1.9, 2.0.  

 
Assuming a Bernoulli jump process, the ML estimates were highly significant and stable. 
The drift of the diffusion component, estimated at μ̂ =0.23, was very high and significant, 

showing that oil prices were constantly under upward pressure. The variances of  

the diffusion and jump components were high and significant, 2
ˆ =4.46 and 2ˆ =4.47, 

respectively. The variance of the jump component became more important than that of the 
diffusion component when the jump intensity was restricted to =0.23. The probability of a 

jump in the unrestricted case, computed at ˆ =0.59, was high and borderline significant. The 

mean of the jump component, estimated at ˆ =-1.12, was negative and consistent with the 

negative skewness observed in the data. Oil prices tended to make large moves upward, then 
started to retreat through a sequence of smaller and frequent negative jumps, until they were 
shocked again, making new jumps forward. Yet, the significance of the drift of the diffusion 
process was such that the smaller negative jumps could not outweigh the strong momentum 
that kept pushing oil prices upward. 
 
The method of cumulants was applied under alternative restrictions. The restriction =0.23 

yielded results that were similar to the ML under the same restriction. The drift of the 
diffusion component, estimated at μ̂ =0.32, was very high, showing that oil prices were 

constantly under pressure to move upward. The variances of the diffusion and jump 

components, were estimated at 2
ˆ =1.81 and 2ˆ =2.78, respectively, indicating that the jump 

component tended to dominate the dynamics of the oil price process. The mean of the jump 

component, estimated at ˆ =-0.85, was negative and consistent with the negative skewness in 

oil price returns. Application of the Press (1967) method, with the restrictionμ =0, yielded 

implausible results for the variance of the jump component, namely 2ˆ =-13.88. Such an 

anomaly was not unexpected in the case of Press’ method, indicating that the restriction 
μ =0, could not be borne by the data, and was in sharp contrast with the strong upward trend 

in oil prices. In contrast, Beckers’ method, with the restriction =0, yielded results which 

were highly plausible. The drift component of the diffusion, estimated at μ̂ =0.12, was 

smaller than, say, in the ML case, since =0 implied less influence for the drift of the 

diffusion, compared to the case when  was negative, to maintain an upward trend in oil 

prices; it was, however, close to the drift of the AR2 (Table 1) and the actual mean of oil 
price returns (Figure 2). The variances of the diffusion and jump components were high, 

2
ˆ =3.34 and 2ˆ =8.62, respectively. The variance of the jump component, however, 
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dominated that of the diffusion component. Noticeably, the jump intensity, estimated 

at ˆ =0.22, was quite close to the frequency of jumps in oil prices exceeding ± 3 percent, 

computed from the data set. 
 
The ECF was applied unrestrictedly and with restriction =0.23. The drift of the diffusion 

component, estimated at μ̂ =0.57, was very high and significant. The variance of the 

diffusion component, 2
ˆ =0.54, was not significant, and was dominated by the variance of 

the jump component, 2ˆ =0.96, which was significant. The intensity of the jump process, 

estimated at ˆ = 4.37, was high and significant, indicating that the oil price process was 

characterized by frequent jumps. The mean of the jump component, ˆ =-0.1, was negative, 

significant, and consistent with skewness in oil price returns. The ECF, applied with the 
restriction =0.23, yielded results which were similar to those of the ML using the same 

restriction. The drift μ̂ =0.27 was positive and significant; the variance of the diffusion, 
2

ˆ =3.34, was significant; however, it was dominated by the variance of the jump 

component, 2ˆ =6.97, indicating that the jump process played a more important role in oil 

price dynamics in relation to the diffusion process. The mean of the jump component,  
ˆ =-0.52, was negative, significant and consistent with skewness observed in the data. 

 
In sum, parameter estimates from the three methods were fully concordant with the data. 
They established that the oil price process was dominated by the jump process, with large 
discontinuities occurring at high intensity, meaning that oil markets were permanently out-of-
equilibrium during the sample period. The negative mean of the jump component could be 
seen as smaller downward adjustment in world crude oil demand following a large upward 
jump in oil prices. However, the downward adjustment in demand was short-lived; the drift 
component of the diffusion process was very high for daily data, indicating that oil demand 
was pushed up by a strong income effect; consequently, oil prices were under a constant 
pressure to move upward. These results can be explained given global elasticities of demand 
and supply for crude oil. World demand was highly elastic with respect to world income, and 
highly inelastic with regard to oil prices. Crude supply has been rigid, showing little 
sensitivity to prices. As world real GDP expanded at 4–5 percent per year during the period 
under study, it caused world oil demand to expand at similar rate, creating an excess demand 
for oil. Given the short-term inelasticity of demand and supply with respect to prices, any 
small excess demand for oil would cause large variation in prices. In turn, large price 
increases would have small negative effect on oil demand. The negative price effect, 
however, would be quickly dominated by a positive income effect. 
 

IV.   CRUDE OIL PRICE AS A VARIANCE-GAMMA LEVY PROCESS 

The J-D model has essentially two limitations. First, it does not capture the notions of time-
varying and stochastic volatility. In particular, stochastic volatility is found to have a key role 
in explaining skewness and leptokurtosis in financial time-series and the skew in market 
implied volatilities. In this respect, skewed distribution can arise either because of 
correlations between asset prices and volatility shocks, or because of nonzero average jumps. 
Similarly, excess kurtosis can arise either from volatile volatility or from a substantial jump 
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component. Second, the J-D model is fit to model finite large jumps, and cannot capture 
infinite small jumps which are similar to small jumps in the diffusion process. With a view to 
capturing the notion of stochastic volatility and modeling small and frequent jumps, while 
simplifying computational costs, many researchers (e.g., Carr et. al (2002, 2003), Carr and 
Wu (2004), Cont and Tankov (2004)) have proposed the use of Levy processes for modeling 
asset prices. Accordingly, oil prices are modeled in this section as a Levy process.16 More 
specifically, oil price returns are assumed to follow a Levy process with a variance-gamma 
distribution. This type of model has a simple CF and is easier to estimate. 
 
1.  Definition of the Variance-Gamma process 
 
A variance-gamma( )VG process is defined as a Brownian motion with drift and 

volatility , i.e.
t

t B+ , where
t

B  is an ordinary Brownian motion, time-changed by a 

gamma process. More precisely, let { , 0}
t

G G t=  be a gamma process with 

mean 1/ 0a = > and variance 1/ 0b = > .17 Let { , 0}
t

B B t= denote a Brownian motion, 

and let 0>  and R ; then the VG  process ( ) ( ){ , 0}VG VG

t
X X t= , with 

parameters 0> , 0>  and , can be defined as ( )

t

VG

t t G
X G B= + . The CF is given by: 

( ) 2 21
( ; , , ) [exp( )] (1 )

2

t

VG

VG t
u E iuX iu u= = +     (20) 

The two additional parameters in theVG  distribution, which are the drift of the Brownian 

motion, , and the volatility of the time change, , provide control over skewness and 

kurtosis, respectively. Namely, when 0< , the distribution is negatively skewed, and vice 

versa. Moreover, larger values of  indicate frequent jumps and contribute to fatter tails. The 

moments of the log-price returns under ( , , )VG are: the mean = ; the variance 

                                                
16 A Levy process (LP) 0( )

t t
X  has a value 

0
0X = at 0t =  and is characterized by independent and 

stationary increments, and stochastic continuity, i.e., discontinuity occurs at random times. The CF of a LP is 

given by the Levy-Khintchine formula: 

1

2
2

1

\{0}

( ) [ ] exp [ 1 1 ( )] ( )
2

iuX iux

x

R

u E e i u u e iux x dx
<

= = + ,u R , 0t . Where 

R is the drift parameter, 
2

0  is the volatility parameter, and  is a Levy measure on \{0}R , which 

measures jumps of different sizes. A LP is characterized by its triplet
2( , , ) . 

17 The probability density of the Gamma process with mean rate t  and variance t  is well 

known:

1
1

( ) / ( )
x t

t
f x x e= . Its Laplace transform is [exp( )] (1 )

t

t
E uG u= + . 

The result is that the VG  process has a simple CF 

2
2( ) 1/(1 )

2

t

VG
u i u u= + . 
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= 2 2
+ ; skewness =

2 2

2 2 3/ 2

(3 2 )

( )

+

+
; and kurtosis = 4 2 2 23(1 2 ( ) )+ + . 

Clearly, skewness is influenced by , and kurtosis by . 

 
2.  Estimation of the Variance-Gamma process 

 

Let the crude oil price
t

S  be modeled as 0
exp[ ]

t t
S S t Xμ= +  where

t
X  is a VG process. The 

log price return is 1log
t t t t

x S X Xμ= = + . Because of infinite divisibility of the VG 

process, the CF of the log price return is:  

[ ] [ ]1 1

1

2 2

[exp( )] exp( ( ) exp( ) exp( )

1
exp( )(1 )

2

t
E iux E iu X iu E iuX

iu i u u

μ μ

μ

= + =

= +
    (21) 

Using the data described in Section II, the parameters were estimated using the ECF 
approach (Table 3).18 The estimated parameters of the VG process were stable and 
statistically significant, and corroborated the findings for the J-D process. Namely, when 
modeled as a VG process, crude oil prices exhibited a high drift coefficient, high volatility, 
frequent and large jumps, and skewness. The drift coefficient, estimated at ˆ 0.09μ = , asserted 

the presence of a strong upward pulling force which kept reigniting oil prices. The volatility 
parameter, ˆ 1.66= , was high and significant, showing that oil markets were facing high 

uncertainties regarding future movements in prices. The parameter , which controls for tail 

fatness, estimated at ˆ 0.80= , was high and significant, implying the presence of frequent 

and large jumps in oil prices. The parameter , which controls for skewness, estimated at 

ˆ 0.36= , was negative and significant, showing that the VG distribution was left-skewed. 

More specifically, in response to large positive jumps in oil price, there seemed to be a 
cooling off period during which world crude oil demand might slowdown, causing small and 
frequent negative jumps in prices. However, the income demand elasticity was much higher 
and more significant than the price elasticity; thus faster world economy growth kept pushing 
world oil demand upward.  
 

Table 3. Parameter Estimates of the VG process 1/ 

Drift μ  Drift  Volatility  Variance of VG  

0.09 
(t=3.52) 

-0.146   
(t= -2.54) 

1.66  
(t= 80.4) 

0.804 
 (t=52.3) 

1/ Using ECF method. 
 

V.   OPTION PRICING USING CHARACTERISTIC FUNCTIONS 

In this section we present some basic elements of option pricing with a view to paving the 
way for inferring oil price density forecast from options’ prices. The estimation of the risk-

                                                
18 The VG process has also been estimated using R and the package ghyp developed by 

Wolfgang Breymann and David Luthi: www.r-project.org. The estimates were very close to the 

ones reported here. 
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neutral distribution is known as the inverse problem in option pricing models. While the 
pricing problem is concerned with computing option values given model’s parameters, the 
inverse problem consists of backing out the parameters describing risk-neutral dynamics 
from observed prices. The computation of a risk-neutral distribution could be seen as 
estimating market’s expectations for future prices, paying attention not only to the mean, 
which is observed directly from futures prices, but also to skewness (direction of trends) and 
kurtosis (risk for large fluctuations or crash); in contrast, estimation of statistical distribution 
from realized data could be seen as the actual distribution of historical prices.  
     
Option Value in the Asset Price Space: Under martingale pricing, the value of an option, 
denoted by ),( tSf , is a convolution of a discounted pay-off function with the state price 

density. For a given final condition (pay-off): )(),( SgTSf = for all S , the option value is: 

( ) ( )

0
( , ) [ ( ) | ] ( ) ( | )Q r T t r T t

t t T t T T t Tf S t E e g S S S e g S p S S dS= = =  (22) 

Where Q  is the risk-neutral measure. The conditional expectation is computed with respect 

to a risk-neutral transition probability density )|( tT SSp . However, for many stochastic 

processes involving stochastic volatility, jumps, or Levy type processes, transition densities 
are often complicated and may not be readily available in closed form. In contrast, the CF of 
the underlying stochastic process may be readily available in closed form. It is defined as: 

0
( , ) ( | )TiuS

T t Tu t e p S S dS=  (23) 

Where u  is the transform variable.  

 
Option Value in the Fourier Space: knowledge of the CF enables the computation of 
option prices in the Fourier space according to two alternative methods. The first method, 
proposed by Heston (1993), relies on a numerical inversion of the CF. However, noting the 
singularity of Heston’s formula at 0u = , Carr and Madan (1999) proposed, instead, a 

numerical inversion of the Fourier transform of the option value. More specifically, define 
the Fourier transform of the option value as: 

( ) ( )ˆ iuSf u e f S dS=   (24) 

If ( )f̂ u  can be explicitly expressed in terms of ( )u as: 

( ) ( )( )ˆ ˆf u f u=   (25) 

a fast Fourier transform (FFT) inversion of ( )( )f̂ u  would then compute the option value 

from its transform as: 

( ) ( )
1 ˆ,

2

iuSf S t e f u du=  (26) 

Let ln
t t

s S=  be the log-price; ln( )k K= the log strike price; ( )
T

C k = value of a T maturity 

call option with strike K ; and ( ) exp( ) ( )
T T

c k ak C k  for 0a > , the damped option price. The 

CF of ln
t t

s S=  under the risk-neutral measure is given by ( , ) ( | )Tius

T t Tu t e p s s ds= . Let  
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( ) ( )iuk

T T
u e c k dk=  be the Fourier transform of ( )

T
c k . Carr and Madan (1999) showed that 

( )
T

u can be expressed in terms of ( )T
u as: 

2 2

( ( 1) )
( )

(2 1)

rT

T

T

e u a i
u

a a u i a u

+
=

+ + +
    (27) 

Knowledge of the CF ( )
T

u , which is the CF of the log of the asset price under the risk 

neutral-measure, implies knowledge of the Fourier transform of the value of the option 

( )
T

u . The option price can therefore be computed via Fourier inversion as: 

0

exp( ) exp( )
( ) ( ) ( )

2

iuk iuk

T

ak ak
C k e u du e u du= =  (28) 

Fourier or Laplace-based methods for pricing options were further expanded. For instance, 
noting that an option price has two components, which are the intrinsic value defined as 

( )T
S K

+
 and the time value, and that the latter component is square integrable for out-of-

money options, Cont and Tankov (2004) proposed to compute the time value and derive the 
option value by adding the intrinsic value. Indeed, denoting the time value of an option by 

( )T
z k , its Fourier transform is: 

( ) ( )iuk

T T
u e z k dk=    (29) 

Cont and Tankov (2004) established that: 

( )
( )
( )1

rT iurT

T

T

e u i e
u

iu iu
=

+
      (30) 

Option prices can be found by inverting the Fourier transform: 

( ) ( )
1

2

iuk

T T
z k e u du=      (31) 

Most notable extension was due to Lewis (2001) who showed that the option value can be 
expressed as a convolution of generalized Fourier transforms: 19 

ˆ( , ) ( ) ( )
2

irT
izX

T

i

e
C S K e z g z dz

+

= (32) 

where 
0

ln ln
t t

S S X rt= + + , ˆ ( ) exp( ) ( )g z izs g s ds= , z u iw= +  is a complex number, 

ln
t t

s S= , and ( ),i i + is an integration line parallel to the real axis, with  

                                                

19 This formula is based on Parseval’s identity: 
*1

ˆ( ) ( ) ( ) ( )
2

T T Tg S p S dS g z z dz= , where ˆ ( )g z is 

the Fourier transform of ( )Tg S and 
*( )z is the conjugate of ( )z , i.e., 

*( ) ( )z z= . 
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satisfying integration conditions (See Cont and Tankov, 2004). Being expressed as a 
complex-valued integral, the option value can thus be computed using residue calculus.20 
Option pricing requires knowledge of the risk-neutral process and the CF associated with this 
process. Under the risk neutral process, money market account discounted asset prices are 
martingales and it follows that the mean rate of return on the asset under this probability 

measure is the continuous compounded risk-free interest rate r . If the asset price
t

S is 

modeled as 0
exp[ ]

t t
S S rt X= +  where

t
X  is an LP, to obtain a risk-neutral process verifying 

the martingale property, define: 

exp( ( )) exp( )exp( ( ))
( ) (0) (0)

[exp( ( )] [exp( ( )]

rt X t rt X t
S t S S

E X t E X t

+
= =   (33) 

then ( )( ) / exp( ) (0)E S t rt S= . The resulting risk-neutral process for the log price is: 

log ( ) (log (0) log [exp( ( )]) ( ))S t S rt E X t X t= + + . The CF of the log price is: 

 
[exp( log( ( )))] exp( ((log (0) log [exp( ( )]) [exp( ( ))]E iu S t iu S rt E X t E iuX t= +  (34) 

 
For the VG model, the resulting risk-neutral process for the asset price is: 

0 exp[ ( , , ) ]
t t

S S rt X t= + + , 0t >  (35) 

where, by setting 21 1
( ) ln(1 )

2
= , Madan et al. (1998) showed that the CF for log 

of 
t

S  is: 

2 2

0

1
( ) exp[ln( ) ( ) ](1 )

2

t

t
u S r t i u u= + + +   (36) 

To obtain option prices, one can analytically invert ( )u  to get the density function and then 

integrate the density function against the option payoff as in Heston (1993). Alternatively, 
the Fourier transform of the option value can be numerically inverted using FFT as in Carr 
and Madan (1999) and other Fourier-Laplace methods. The Fourier inversion can be 
approximated discretely via an N -point sum with a grid spacing of  in the Fourier domain. 

The inversion integral can be approximated using an integration rule, such as Simpson’s or 
the trapezoidal rule, as: 

21 ( )

00

( )
j

N ik j u
iku N

j

j

e u du e
=

%   (37) 

                                                
20 Lewis showed that the Fourier transform of a call payoff is given by 

( ) ( )
( )

1

2
ˆ

iz
izx x K

g z e e K
z iz

+
+

= = , Im 1z > . For a put option, the payoff transform is  

( ) ( )
( )

1

2
ˆ

iz
izx x K

g z e K e
z iz

+
+

= = , Im 0z < . Accordingly, a European call can be priced 

as follows: 
( )

1

2
( , ; ) ( )

2

ir iz

izk

t

i

Ke K
C S K e z dz

z iz

+ +

= , where ( )0log /k S K= . 
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The points 
j

u are equidistant with grid spacing , 
j

u j= . The value of  should be 

sufficiently small to approximate the integral well enough, while the value of N should be 

large enough to assume the CF is equal to zero for u u N> = . In general, the values 
j

% are 

set equal to ( )
j j j

u w=% , where 
j

w  are the weights of the integration rule. 

 
VI.   DENSITY FORECAST OF CRUDE OIL PRICES: THE INVERSE PROBLEM 

An application of the above analysis to crude oil options is undertaken in this section with the 
objective of estimating, from observed options’ market values, density forecast for crude oil 
prices at a given maturity date. Assuming a VG distribution for the log price, the inverse 

problem can be stated as finding the parameters ( )2
, ,=  by minimizing the quadratic 

pricing error: 

( )
2

*

1

1ˆ arg min ( , ) ( , )
M

j j j j

j

C T k C T k
M =

= , 1, 2,....,j M=  (38) 

under the put-call parity constraint: ( ) ( )*

0
, ,

rT

j j j j jS P T k C T k k e+ =  

where * ( , )j jC T k denotes the call option computed from the VG distribution, ( ),j jC T k  and 

( ),j jP T k  denote the observed prices of call and put options for maturity T and strikes jk , 

respectively and M denotes the number of traded options (or strikes). ( )*
,j jC T k  is given by 

FFT; namely ( )*

0

exp( )
, ( )jiukj

j j T

ak
C T k e u du= . 

The addition of the put-call parity condition brings extra-sample information which helps to 
regularize the estimation problem. 21 Taking into account the put-call parity constraint and 
choosing a penalty parameter 0h > , the minimization problem becomes: 

( ) ( ) ( )( )( )
22

* *

0

1

1ˆ arg min ( , ) ( , ) , ,
M

rT

j j j j j j j j j

j

C T k C T k h S P T k C T k K e
M =

= + +  (39) 

 
The estimation of the implied risk-neutral distribution from option prices is a deconvolution 
problem. Madan et al. (1998) applied maximum likelihood method to the density function to 
calibrate a VG process based on option prices. In this section, we remain consistent with 
deconvolution methods based on characteristic functions as these functions were found to 
satisfy the same differential equations or least squares problems as the corresponding option 
prices. As in Section IV, the estimation method relies principally on the empirical 
characteristic function. The minimization problem is restated as: 

                                                
21 Cont and Tankov (2004) argued that the inverse problem could be an ill-posed problem and proposed the use 

of relative entropy, which is the Kullback-Leibler distance for measuring the proximity of two equivalent 

probability measures, as a regularization method with the prior distribution estimated from the statistical data 

via the maximum likelihood method. This regularization will enable the finding of a unique martingale 

measure.  
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( )

2

1

2
1

0

1 1 1

1
( ) ( , )

1ˆ arg min

1 1
, ( )

i j j

i j j i j j i j j

M
iu k ak

T i j j
N

j

rTM M Mi
iu k k iu k ak iu k ak

j j T i j

j j j

u e e C T k
M

N e
h S e e e e P T k u e e K

M M M

=

=

= = =

=

+ +

(40) 

Where N is the number of steps in the Fourier grid. Note that the dampening factor in Carr 

and Madan method, namely jak
e , would not be required if one uses Fourier transform of the 

time value of the option or Lewis method. The Fourier transforms of jak
e , ( , )jak

j je C T k , 

( , )jak

j je P T k , and jak

je K were computed using FFT.22   

 
To check on the robustness of the estimated parameters, an alternative calibration method has 

been used. Let  ( )
'

1 1
,...., , ,.....,

M M
V C C P P=  be a vector of observed call and put option 

prices, let D be a matrix of payoffs with dimensions ( )2 ,
S

M N where 
s

N M is the 

number of states. Observed option prices V are related to the empirical risk-neutral 

distribution, q , as follows:23 

. .
rT

V e D q=    (41) 

The risk-neutral distribution is computed using Tikhonov regularization method described in 
Engle et al (1996) as:24  

( )
1 '

ˆ . ' . . .
rTq e D D h I D V= +      (42) 

Where 0h >  is a penalty parameter. By taking the Fourier transform of q̂ , the parameters of 

the distribution are estimated using the empirical characteristic function method. 
  
The inverse problem was applied for the VG model only for space limitation. The same 
methodology applies identically to the J-D model.25 The observed data set was for July 21, 

                                                
22 Packages for computing FFT can be downloaded from http://www.fftw.org/. 

23 This equation can be restated with a view to using the call-put parity condition. Let 
C

D ( ),
S

M N and 

P
D ( ),

S
M N be the payoff matrices associated with call and put options respectively; let also , 

( )
'

1
,....,

C M
V C C=  and ( )

'

1
,....,

P M
V P P= be observed call and put option prices, 

K
V be a vector of 

strikes, and 1 (1,......,1) 'V =  be the unit vector, then:  . .
rT

C C
V e D q=  subject to: 

0 1
. . .

rT rT

P C K
S V V e D q e V+ =  

24 The computation of q̂ was carried out using the Matlab package by C. Hansen (1998): Regularization Tools 

A Matlab Package for Analysis and Solution of Discrete Ill-Posed Problems. 

25 The risk-neutral CF for any asset price model is given: 

[exp( log( ( )))] exp( ((log (0) log [exp( ( )]) [exp( ( ))]E iu S t iu S rt E X t E iuX t= + . For the J-D model, 
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2006; it consisted of call and put futures options contracts maturing end-September 2006; the 
risk-free interest rate, taken here to be the three-month US Treasury bill rate, was equal to 
4.965; and the crude futures price, was equal to US$74.43/bl. The constrained minimization 

yielded the following triplet for the risk-neutral distribution: 2
ˆ = 1.72, ˆ =1.12, ˆ =0.37 

which described market’s expectations on July 21, 2006 regarding futures prices for end-
September 2006. Clearly, market participants did not anticipate any short-term change in the 
underlying fundamentals characterizing oil markets. They expected oil prices to remain 

highly volatile ( 2
ˆ =1.72) and dominated by a jump process ( ˆ = 1.12). They also expected 

oil prices to remain under pressure, as they assigned higher probabilities for oil prices to rise 
above the futures price level than to fall below this level. This was shown by a right-skewed 

risk-neutral distribution ( ˆ =0.37). 

 
VII.   CONCLUSIONS 

Despite the importance of oil prices, little is known about their underlying stochastic process. 
Our main findings are that these dynamics are dominated by frequent jumps, causing oil 
markets to be constantly out-of-equilibrium. While oil prices attempted to retreat following 
major upward jumps, there was a strong positive drift which kept pushing these prices 
upward. Volatility was high, making oil prices very sensitive to small shocks and to news. 
The findings for both the J-D and VG specification were fully consistent with the underlying 
fundamentals of oil markets and world economy. More specifically, faster world economic 
growth during the sample period and highly expansionary monetary policies caused demand 
for crude oil to expand at similar pace. Given price inelastic oil demand and supply, any 
small excess demand (supply) would require a large price increase (decrease) to clear oil 
markets; hence, the observed high intensity of jumps and the strong stimulus for oil prices to 
rise.  
 
When modeled as a jump-diffusion (J-D) process, oil price dynamics were dominated by the 
discontinuous Poisson jump component compared to the continuous Gaussian diffusion 
component, showing that oil markets were constantly out-of-equilibrium during the sample 
period and were sensitive to demand and supply shocks and to news. While the variance of 
the diffusion component was high and significant, it was surpassed by a still higher and 
significant variance of the jump component. Both variances, together, illustrated the high 
volatility of the oil markets. The drift of the diffusion component was, however, very high 
and significant, indicating that oil prices were strongly influenced by an upward trend. The 
mean of the jump component was negative; more specifically, sharp upward jumps in oil 
prices had a temporary restraining effect on oil demand and were followed by a short-lived 

                                                                                                                                                  
the resulting risk-neutral process for the asset price is: 

2 2 2 2

0( ) exp[ln( ) ( ) ]exp exp 1
2 2

T

u u
u S r T T i u i uμ= + + + +  

where
2 2

exp 1
2 2

μ= + + + . 
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sequence of price declines. The mean of the jump component was, however, outweighed by 
the drift of the diffusion component, which kept prices on a rising trajectory. 
 
Oil prices were also modeled as a Levy process (LP) with a variance-gamma (VG) 
distribution. The findings were similar to the J-D model. The drift component was positive 
and highly significant, establishing that oil prices were constantly pulled by an upward trend. 
The variance of the VG distribution was significant and high. The parameter controlling for 
the jump process was high and significant, indicating that oil prices were largely dominated 
by the jump component and oil markets were constantly out-of-equilibrium. The skewness of 
the VG distribution was negative, indicating that large upward moves in oil prices triggered a 
temporary depressing effect on world oil demand, translating into a temporary sequence of 
small negative jumps in oil prices. However, the upward momentum outweighed the small 
negative jumps. Turning to market expectations, the implied risk-neutral distribution from 
call and put option prices, assuming a VG process, showed that market participants held 
higher probabilities for oil prices to rise than to fall above the futures price, and expected oil 
prices to remain volatile and dominated by a jump process.      
 
Our findings are relevant for policymakers and industry analysts. They establish the nature of 
the stochastic process underlying oil prices and the importance of components driving this 
process. An explanation of the process parameter estimates in terms of the underlying 
fundamentals for the oil markets are offered in order to comprehend the economics 
underpinning the observed oil prices dynamics. Namely, a change in the process parameters 
would require a change in the underlying fundamentals. Our alternative modeling approaches 
are highly relevant for forecasting, risk management, derivatives pricing, and gauging 
market’s sentiment. Our findings could be helpful for monitoring oil markets and developing 
policies for stabilizing oil markets. 
 

Annex: Method of Cumulants of Probability Distributions 

 
Suppose that X is a real random variable whose real moment generating function is defined 

as: ( ) ( ) ( )uX uXM u E e e f X dX= = , where ( )f X is the probability density of X . Just as the 

moment generating function M of X generates its moments, the logarithm of M generates a 
sequence of numbers called cumulants. The cumulants �n of the probability density of X  

are given by: ( ) ( )
1 1

1 exp
! !

n n

uX n n

n n

m u u
M u E e

n n= =

= = + =  

Where ( )n

n
m E X= is the moment of order n of X . The left-hand side of this equation is the 

moment-generating function, so �n/n! is the nth coefficient in the power series representation 
of the logarithm of the moment-generating function. The logarithm of the moment-generating 
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function is therefore called the cumulant-generating function, written as:26 

( )( )
0

log
!

n

n

n

u
M u

n=

= . The method of cumulants attempts to recover a probability 

distribution from its sequence of cumulants. In some cases no solution exists; in other cases a 
unique solution, or more than one solution, exists. The relationship between moments and 
cumulants is of paramount importance in the estimation of the unknown parameters of the 

density function. First, consider moments about 0, which can be written as ( )jj
m E X= , 

0,1, 2...j =  The cumulant/moment theorem says that if X is a random variable with 

n moments
1

m , 
2

m ,......,
n

m , then X has n  cumulants 
1
, 

2
,....,

n
, and the cumulants are 

related to the moments by the following recursion formula:27 
1

1

1

1

n

n n n n j

j

n
m m

j=

=   

Note that
0

1m = . By carrying the recursion formula, the relation between raw moments and 

cumulants can be stated as: 

1 1
m =  

2 2 1 1
m m= +  

3 3 1 2 2 1
2m m m= + +  

4 4 1 3 2 2 3 1
3 3m m m m= + + +  

For central moments, defined by ( )( )( )jj
m E X E X= , the first moment 

1
m  is zero; the 

relationship between moments and cumulants simplifies to: 

1 1
0m = =  

2 2
m =  

3 3
m =  

4 4 2 2
3m m= +  

The first cumulant is simply the expected value; the second and third cumulants are 
respectively the second and third central moments (the second central moment is the 
variance); but the higher cumulants are neither moments nor central moments, but rather 

                                                
26 The cumulants are also equivalently defined in terms of the characteristic function, which is the Fourier 

transform of the probability density function: ( ) ( ) ( )iuX iuXu E e e f X dX= = . The cumulants 
n

 are 

then defined as: ( )
( )

1

ln
!

n

n

n

iu
u

n=

=  

27 This recursion formula is the Faa di Bruno’s formula, equivalently written as:  

1 1

0

r
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more complicated polynomial functions of the moments. The nth moment 
n

m  is an nth-

degree polynomial in the first n cumulants. Of particular interest is the fourth-order 

cumulant, called kurtosis, which can be expressed as ( ) ( ) ( )( )
2

4 2
3kurt X E X E X= . 

Kurtosis can be considered as a measure of the non-Gaussianity of X . For a Gaussian 
random variable, kurtosis is zero; it is typically positive for distributions with heavy tails and 
a peak at zero, and negative for flatter densities with lighter tails.  
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